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Abstract
We consider two simple models of higher derivative and nonlocal quantum
systems. It is shown that, contrary to some claims found in literature, they can
be made unitary.

PACS numbers: 03.65.−w, 04.60.Ds

Considerable attention has been paid recently to the problem of quantizing the theories which
contain higher derivatives or are even nonlocal in time. This is mainly due to the fact that
such theories arise naturally when one attempts to model the dynamics on noncommutative
spacetime with the help of star product construction [1–3]. It has been shown that the field
theories with spacetime noncommutativity lead to nonunitarity and acausality, at least when
quantized with the help of naive Feynman rules [4–6]. There are several proposals of alternative
quantization schemes which seem to cure the trouble with nonunitarity [7–10]. However, they
give rise to other problems [11, 12] so the question of the existence of consistent quantum
theory remains open. In view of that one is tempted to study simple models to gain more
understanding of the problems we are faced with. However, even in the simplest cases there is
some misunderstanding concerning the consistency of the relevant models. In order to clarify
some issues we study two simple systems which are sometimes claimed to lead to nonunitary
evolution.

Let us first consider the Lagrangian [13]

L = 1
2 (q̈2 − �4q2). (1)

The corresponding classical equation of motion reads

q(IV ) − �4q = 0. (2)

The general solution to equation (2) is a linear combination of exp(±i�t) and exp(±�t). It is
sometimes claimed [13] that due to the existence of exponentially rising solutions exp(±�t)

the quantum Hamiltonian of such type of systems is not Hermitean and the evolution operator
exp

(−itH
h̄

)
is not unitary.
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Let us consider this problem in some detail. In order to quantize the model we have to
put it first into a Hamiltonian form. This can be done with the use of Ostrogradsky formalism
[14–16]. One defines the canonical variables

q1 ≡ q, q2 ≡ q̇

�1 ≡ δL

δq̇
= ∂L

∂q̇
− d

dt

(
∂L

∂q̈

)
= − ...

q

�2 ≡ δL

δq̈
= ∂L

∂q̈
= q̈

(3)

and the Hamiltonian

H ≡ �1q̇1 + �2q̇2 − L = �1q2 +
1

2
�2

2 +
�4

2
q2

1 . (4)

It is straightforward to check that the canonical equations of motion imply the initial equation
for q.

Our system, being linear, can be immediately quantized. The question we intend to solve
is whether the resulting quantum system is unitary. The argument against unitarity based on
the existence of exponentially growing solutions to classical equations of motion might go as
follows. Let

X̂ ≡ �̂1 − ��̂2 − �3q̂1 − �2q̂2 (5)

then

[X̂, Ĥ ] = ih̄�X̂ (6)

(which is equivalent to the existence of exponentially growing solutions to Heisenberg
equations of motion). Assume now that Ĥ is self-adjoint and let |E〉 be the eigenvectors
of Ĥ (possibly the generalized ones, corresponding to continuous spectrum). Then equation
(6) implies

(E − E′ − ih̄�)〈E′|X̂|E〉 = 0. (7)

Equation (7) is fulfilled only provided

〈E′|X̂|E〉 = 0 (8)

for all E,E′ which in turn means that the canonical variables are linearly dependent
contradicting the canonical commutation rules.

The only weak point in the above reasoning is the assumption on the existence (even in
distributional sense) of the matrix elements 〈E′|X̂|E〉. In fact, we shall show below that the
theory is unitary while 〈E′|X̂|E〉 are not well defined.

To this end we make a simple canonical (hence unitary) transformation

q̂1 = 1√
2�

(X̂1 + X̂2), q̂2 = 1√
2�

(P̂1 − P̂2)

�1 = �√
2
(P̂1 + P̂2), �̂2 = �√

2
(−X̂1 + X̂2).

(9)

Then the Hamiltonian takes the following form:

Ĥ =
(

1

2
P̂ 2

1 +
�

2
X̂2

1

)
−

(
1

2
P̂ 2

2 − �

2
X̂2

2

)
. (10)

Here Ĥ is the difference of the harmonic oscillator and the inverted harmonic oscillator. Both
terms depend on different variables so if they are self-adjoint and generate unitary dynamics so
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is Ĥ . Only the second piece calls for some explanation. It is unbounded from below but only
quadratically. Therefore, it defines a self-adjoint operator with purely continuous spectrum
covering the whole real axis [17].

In order to find the coordinate representation for eigenvectors of Ĥ we have only to
find the corresponding wavefunctions for the inverted harmonic oscillator. This is quite
straightforward [18] and results in the following final formula for eigenfunctions of Ĥ :

〈X1, X2|n, ε;±〉 =
(

1√√
π2nn!

4

√
�

h̄
Hn

(√
�

h̄
X1

)
e− �X2

1
2h̄

)

×

 4

√
2�

h̄

e
επ

4h̄�√
4πch

(
πε
h̄�

)D− iε
h̄�

− 1
2

(
±

√
2�

h̄

(
1 + i√

2

)
X2

)
 . (11)

Here Hn are Hermite polynomials, while Dν being the parabolic cylinder functions. The
energies of the above states are given by

E ≡ E(n, ε) = h̄�

(
n +

1

2

)
− ε. (12)

Consider now the matrix elements 〈E′|X̂|E〉. By virtue of equations (5) and (9) we find

X̂ =
√

2�(P̂2 − �X̂2). (13)

Now, using (11), (13) and the asymptotic form of parabolic cylinder functions [18] we find
that the matrix elements 〈n′, ε′, λ′|X̂|n, ε, λ〉, λ, λ′ = ±1, are expressed, apart from regular
contributions, in terms of badly divergent integrals of the form∫ ∞

dx exp

(
i(ε′ − ε)

h̄�
lnx

)
∼

∫ ∞
dy exp

(
y

(
1 + i

(ε − ε′)
h̄�

))
. (14)

Therefore, the matrix elements under consideration are not well defined even in the
distributional sense.

Let us add some general remarks concerning our model. It provides a particular example
of the so-called Pais–Uhlenbeck quartic oscillator [19]. For the general Pais–Uhlenbeck
oscillator the differential operator entering the Euler–Lagrange equation is a fourth-order linear
one containing only even powers of time derivative. It can be factorized into the product of two
second-order operators; the corresponding frequencies squared may be either real or complex
conjugated (in particular, they may coincide). The general solution to the dynamical equation
is a sum of two terms each describing a second-order system. Therefore, the Ostrogradski
Hamiltonian is a linear combination of two commuting pieces. In particular, for real positive
frequencies squared the Hamiltonian is a difference of two harmonic oscillators [19, 20]
(the difference is due to the fact that Ostrogradski Hamiltonian is always unbounded from
below). For other values of frequencies the commuting pieces represent inverted oscillators,
two-dimensional angular momentum and dilatation operators or kinetic energy of free particle
on the plane [19] (see also equation (26) below). One should also note that due to the
existence of two globally defined independent integrals of motion there exists a large variety
of canonically/unitary inequivalent Hamiltonian formulations [21]. Whatever Hamiltonian
formalism one starts with, the resulting quantum theory is unitary. This is due to the fact
that the Hamiltonian is always a linear combination of two commuting pieces, each of them
generating unitary evolution (the latter can be shown by referring to relevant mathematics
[17]). Considering any such piece from the point of view of Heisenberg matrix mechanics one
notes that its eigenvalues are complex (i.e. the evolution is not unitary) if, on the classical level,
the relevant dynamics contains exponentially growing terms. This conclusion is, however,
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wrong because the relevant matrix elements simply do not exist. On the other hand, the
matrix elements are well defined and Heisenberg method leads to real energies if the classical
solutions are oscillatory functions multiplied by at most polynomial functions of time.

As a second model we consider the nonlocal harmonic oscillator [22, 23]

L = 1

2
q̇(t)2 − ω2

2
q

(
t − T

2

)
q

(
t +

T

2

)
. (15)

The Euler–Lagrange equation∫
dt ′

δL(t ′)
δq(t)

= 0 (16)

reads

q̈(t) +
ω2

2
(q(t − T ) + q(t + T )) = 0. (17)

This theory can be quantized using the method of Pais and Uhlenbeck [19]. To this end we
rewrite the Lagrangian in an equivalent form

L = −1

2
q(t)q̈(t) − ω2

4
((q(t)q(t − T ) + q(t)q(t + T )) (18)

or

L = −1

2
q(t)

((
d

dt

)2

+ ω2ch

(
T

d

dt

))
q(t). (19)

According to the prescription given in [19] we consider the entire function


(u) ≡ z2 + ω2ch(T z), u = z2. (20)

It is not difficult to verify that (i) 
(u) has no multiple zeros except a discrete set of values
of ωT ; in the latter case the double zeros are real and negative, (ii) there is a finite nonempty
set of real negative zeros, z2 = −�2

i , i = 1, . . . , m,m � 1, (iii) there is an infinite number
of complex pairwise conjugated zeros, z2 = −ω2

k, z
2 = −ω2

k, k = 1, 2, . . . and
∑∞

k=1 ω−2
k is

absolutely convergent.
By virtue of the above properties one can write

ω4


(z2)
=

m∑
i=1

ηi�
2
i

1 + z2

�2
i

+
∞∑

k=1


 ηkω

2
k

1 + z2

ω2
k

+
ηkω

2
k

1 + z2

ω2
k


 . (21)

Following [19], we define new variables

Q̃i ≡
m∏

j=1
j �=i

(
1 +

1

�2
j

d2

dt2

) ∞∏
k=1

(
1 +

1

ω2
k

d2

dt2

)(
1 +

1

ω2
k

d2

dt2

)
q

Qk ≡
m∏

i=1

(
1 +

1

�2
i

d2

dt2

) ∞∏
l=1
l �=k

(
1 +

1

ω2
l

d2

dt2

) ∞∏
l=1

(
1 +

1

ω2
l

d2

dt2

)
q

Qk ≡
m∏

i=1

(
1 +

1

�2
i

d2

dt2

) ∞∏
l=1

(
1 +

1

ω2
l

d2

dt2

) ∞∏
l=1
l �=k

(
1 +

1

ω2
l

d2

dt2

)
q.

(22)
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With the above definitions the Lagrangian takes the form

L = −1

2

m∑
i=1

ηiQ̃i

(
d2

dt2
+ �2

i

)
Q̃i

− 1

2

∞∑
k=1

(
ηkQk

(
d2

dt2
+ ω2

k

)
Qk + ηkQk

(
d2

dt2
+ ω2

k

)
Qk

)
. (23)

By rescaling Q̃i → Q̃i√|ηi | ,Qk → Qk√
ηk

,Qk → Qk√
ηk

, and passing to the Hamiltonian formalism

we find

H = 1

2

m∑
i=1

(sgn ηi)
(
P̃ 2

i + �2
i Q̃

2
i

)
+

1

2

∞∑
k=1

((
P 2

k + ω2
kQ

2
k

)
+

(
P

2
k + ω2

kQ
2
k

))
. (24)

This is, however, not the end of the story because the variables Qk, Pk are complex. In order
to find the relevant real variables we perform the following complex canonical transformation
[19]:

Pk = 1

2

√
ωk((p1k + iq1k) + i(p2k − iq2k))

P k = 1

2

√
ωk((p1k − iq1k) − i(p2k + iq2k))

Qk = i

2
√

ωk

((p1k − iq1k) + i(p2k + iq2k))

Qk = −i

2
√

ωk

((p1k + iq1k) − i(p2k − iq2k))

(25)

which allows us to rewrite equation (24) as

H = 1

2

m∑
i=1

(sgn ηi)
(
P̃ 2

i + �2
i Q̃

2
i

) −
∞∑

k=1

(Im ωk(q1kp1k + q2kp2k)

+ Re ωk(q1kp2k − q2kp1k)). (26)

So H is a sum (with an alternating sign) of a finite number of harmonic oscillators and an infinite
number of terms which are linear combinations of dilatation and angular momentum in two
dimensions. All terms depend on different variables and can be easily quantized; only dilatation
calls for ordering rule—we adopt the simplest one: q1p1 + q2p2 → 1

2 (q̂1p̂1 + p̂1q̂1 + q̂2p̂2 +
p̂2q̂2).

Let us consider one term of the second sum on the RHS of equation (26). It is of the form

ĥ = µ

2
(q̂1p̂1 + p̂1q̂1 + q̂2p̂2 + p̂2q̂2) + ν(q̂1p̂2 − q̂2p̂1). (27)

Dilatations commute with angular momentum so the spectrum of ĥ reads

εn,λ = µλ + νn, n = 0,±1, . . . ,−∞ < λ < ∞ (28)

and the corresponding wavefunctions (for example, in coordinate representation) can be easily
found [19].

Now, let us consider the classical equations of motion implied by h. They read

q̇i = µqi − νεikqk, ṗi = −µpi + νεikpk. (29)

The solutions are linear combinations of exp((µ ± iν)t) (for q ′s ) or exp((−µ ± iν)t) (for
p′s). Therefore, we are dealing with exponentially growing solutions. Following the same
line of reasoning as in the first example one could conclude that the energy must take complex
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values. Again this conclusion results from the assumption that the matrix elements of canonical
variables in the energy representation are well defined, while it is straightforward to check that
they are badly divergent (cf [19][equation (34)]).

Let us now make few remarks about path integral approach. Some care must be exercised
when dealing with the Hamiltonians unbounded from below. Let us take as an example
the inverted harmonic oscillator with the ‘frequency’ ω. As we have mentioned above the
Hamiltonian is here a well-defined self-adjoint operator with purely continuous spectrum
extending over the whole real line.

The propagator function

K(x, y; t) =
∑
λ=±1

∫ ∞

−∞
d

(
E

h̄ω

)
e

−iEt
h̄ �Eλ(x)�Eλ(y) (30)

cannot be continued to imaginary time whatever the sign of t is. On the level of path integration
the Euclidean path integral is not well defined due to the fact that the integrand ceases to be of
the form of the exponent of negative definite functional.

However, we can do the path integral directly (without referring to imaginary time
approach) by applying Trotter formula and doing Fresnel integrals. The result, when extended
to whole time axis, reads

K(x, y; t) = (1 − i sgn t)

2
√

πh̄|t |

√
ωt

shωt
exp

( iω

2h̄shωt
((x2 + y2)chωt − 2xy)

)
. (31)

This result can be checked as follows. By virtue of equation (30) one gets∫ ∞

−∞
dt e

iẼt
h̄ K(0, 0; t) = 2π

ω

∑
λ=±1

|�Ẽλ(0)|2. (32)

Using equation (31) and the explicit form of �Ẽλ (cf equation (11)) we find that (32) holds
true.

Consider now K(0, 0; t) for t > 0:

K(0, 0; t) = (1 − i)

2

√
ω

πh̄shωt
. (33)

Let us forget for a moment that the imaginary time representation is ill defined. In order to
extract the information about the spectrum of our Hamiltonian we continue (33) to imaginary
time and consider the t → ∞ behaviour. We find that K(0, 0; t) becomes periodic in Euclidean
regime which means that the energies are imaginary!

For our first example the propagator is simply the product of two propagators, one for
harmonic oscillator and one for inverted harmonic oscillator. Therefore, we see that the
improper application of the path integral method will result in wrong conclusions concerning
the energy spectrum and unitarity.

The same applies to the nonlocal harmonic oscillator. We found that the Hamiltonian is a
sum of commuting pieces, many of them having the spectrum unbounded from below. Again,
it appears that an attempt to derive the energy eigenvalues from Euclidean version of path
integral leads to complex energies, i.e. to the conclusion that the theory is not unitary.
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